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Standing spin waves excited optically across an indirect gap in short graphene nanoribbons
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We report theoretical investigations that unveil unique electronic excitations in graphene nanoribbons of
nanoscale length. The main point is that electronic states in short nanowires are standing particle-in-a-box-like
waves, amenable to excitation by electromagnetic radiation. The unusual electronic and magnetic properties of
graphene nanoribbons add another feature: terahertz (THz) radiation induces edge standing spin waves with
different wavelengths at the two edges and a resonant frequency that can be controlled by an external gate
voltage, opening the possibility of THz-spintronic applications.
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Graphene has attracted considerable attention because of
its unique electronic structure and properties. It was recently
found that graphene ribbons of nanoscale width, known as
nanoribbons,' have a small energy gap formed by edge
states with opposite spin polarization. The gap can be tuned
by an external gate field.* The energy gap, however, is indi-
rect, which is unsuitable for optical excitations.

According to the Bloch theorem, electronic states in infi-
nite periodic systems are propagating waves with wave vec-
tor k. Excitations by electromagnetic (EM) radiation can
only be “direct transitions” with Ak=0. Thus, materials with
indirect energy gaps, e.g., Si, are not suitable for optical
applications. In a finite fragment of a periodic system, elec-
tronic states are in principle standing waves made up of =k
Bloch states of the infinite system with k vectors restricted
by the boundary conditions as in the simple case of a “par-
ticle in a box.” This fact has negligible consequences in a
macroscopic finite system except near the surfaces. In a
metal, the surfaces induce Friedel oscillations that extend a
few nanometers into the solid and decay like a polynomial.’
Thus, to an excellent approximation, the bulk of a finite
macroscopic sample behaves like an infinite solid. Surface-
induced Friedel oscillations, however, have been recognized
to play significant roles in nanostructures, notably in trans-
port properties.® Here we focus on the fact that, for a
nanoscale-length crystalline fragment, the effects of the op-
posite surfaces act synergistically and can give rise to a set of
electronic states with unique optical-excitation modes, espe-
cially in the case of indirect energy gaps. One might say that
different kinds of energy bands in the underlying material
can produce unique particle-in-a-box optical-excitation fea-
tures.

We shall demonstrate the phenomenon by explicit calcu-
lations in the case of zigzag graphene nanoribbons (ZGNR)
(Refs. 1-3) of nanoscale width and nanoscale length (Fig. 1).
The unique electronic structure of ZGNRs imparts additional
features to the phenomenon as follows. In infinite ZGNRs,
the energy gap is indirect and is defined by “edge states’”
(analogs of surface states of three-dimensional systems) that
exhibit ferromagnetic ordering in opposite directions.*3
Electromagnetic radiation cannot induce transitions across
the indirect gap. For a nanoribbon of nanoscale length, how-
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ever, the indirect gap becomes an asset, generating unique
particle-in-a-box-like electronic states that are amenable to
optical excitation. The optically excited standing waves of
interest here are “edge standing spin-density waves,” whose
wavelengths are determined by the wave vectors of the
valence-band and conduction-band extrema as we shall ex-
plain later. Noncollinear excitations are negligible due to
very high spin-wave stiffness.” Furthermore, it is known that
the ZNGR energy gap between occupied and empty edge
states is tunable by a transverse dc electric field: the gap of
one spin increases while the gap of the other spin decreases
with the system becoming half metallic at some field value.*
As a result, one can tune the driving photon frequency that
sets up the standing spin waves. The resonant frequencies,
corresponding to the energy gap, span the THz range. Thus,
experimental detection of the effect can provide detailed in-
formation of the energy bands as a function of the transverse
electric field. In addition, the pertinent photon frequencies
can be tuned from zero to the THz region of the electromag-
netic spectrum where the design of devices has been chal-
lenging because of the lack of materials with suitable
response.'’ Thus, graphene nanoribbons (GNR) open the
possibility for nanoscale “THz-spintronic” applications.

EM wave

FIG. 1. (Color online) A zigzag graphene nanoribbon in x-y
plane with a transverse dc electric field along the y direction and an
electromagnetic wave incident along the z direction (perpendicular
to the paper).
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We turn now to an explicit calculation of the effect in
ZGNRs. We note that first-principles calculations of the op-
tical spectra of thin but infinite armchair GNRs were re-
ported recently.!' Tt was found that excitonic effects are
large. Such calculations would be prohibitive for nanoscale-
length GNRs. Instead, in order to demonstrate the effect of
interest here, we adopt the following model Hamiltonian that
includes only the carbon p, orbitals perpendicular to the
GNR plane but reproduces accurately the band structure of
an infinite ZGNR near the Fermi energy:

H EEI(T 10'+Etl] lO' ](T’ (l)

ijo

where ¢ N(c ) annihilates (creates) an electron with spin o at
atom site j of ZGNR, and o=a, B (spin up and down). The
spin-polarized onsite energies contain contributions from the
mean-field magnetic (J;;) and Coulomb (U;;) interactions,

Eig= = 2 Jim;+ 2 Ugnj, 2)

i#j

Where + 1s taken for o=« and - is taken for o=f; m;

=(c! CioCja~ Jﬁc i and n; (cjacja+cjﬁc g are the local mag—
netization and local * charge at site j, respectively. The hop-
ping terms are 7;;=¢ if i and j are nearest neighbors, and #;;
=t' if i and j are second-nearest neighbors. The ¢’ term
breaks the electron-hole symmetry'? and is necessary to re-
produce the indirect band gap in the spin-resolved electronic
structure. For the magnetic coupling we take J;;=J if i and j
are nearest neighbors; J;;=0 otherwise. The Coulomb term is
necessary for reproducing correctly the change in the spin-
dependent band gap as a function of the transverse electric
field predicted by first-principles calculations.* This term in-
cludes two effects: the direct Coulomb interaction between
the p, electrons and the screening effect due to valence elec-
trons not included in this model. Therefore we use the form
U;j=1/(er;), where r; is the distance between sites i and ;.
The effective dielectric constant € accounts for the screening
effects from the valence electrons. The onsite Coulomb en-
ergy, U;=U,, is treated as an additional parameter. The edge
dangling bonds do not enter the Hamiltonian. In Ref. 4 they
are saturated by hydrogen. Other mechanisms such as edge
reconstruction may also passivate the dangling bonds but
such a reconstruction merely moves the dangling-bond en-
ergy levels away from the Fermi energy and does not affect
the bands relevant to Eq. (1)."

The parameters used in the calculations are: t=-2.7 eV,
t'=0.2t=-0.54 eV,'2J=0.9 eV, Uy=6.08 eV, and €=3.68.
The lattice constant of graphene is a=0.246 nm. We used a
ZGNR with eight chains (eight-ZGNR), which is the small-
est width considered in Ref. 4. Figure 2(a) shows the band
structure of the eight-ZGNR without a transverse dc electric
field. The bands for the two spins are degenerate with a band
gap of 0.3 eV. Figure 2(b) shows the band structure of the
eight-ZGNR under a transverse dc electric field E;i,c
=2.0 V/nm. The inset shows that the top of the valence
band reaches the bottom of the conduction band, closing the
indirect band gap (the bottom of the conduction band is lo-
cated at k.=m/a and the top of the valence band at k,
~0.87/a). In Fig. 2(c) we show the change in the spin-
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FIG. 2. (Color online) Spin-resolved band structure of an eight-
ZGNR (a) with Ef,°=0 and (b) E‘;C=2 V/nm closes the band gap;
(c) Change in the spin-resolved band gap of the eight-ZGNR as a
function of E‘;C.

dependent band gap as a function of the electric field. These
results demonstrate that the semiempirical Hamiltonian de-
fined above reproduces corresponding first-principles results
with sufficient accuracy.*

Next we use Eq. (1) to examine the electronic structure of
an 8-ZGNR fragment with a finite length, containing 99 car-
bon atomic lines (49.5 atomic units) in the x direction. We
refer to this structure as (8,99) ZGNR. The highest occupied
molecular orbital (HOMO)-lowest unoccupied molecular or-
bital (LUMO) gap of the (8,99) ZGNR vanishes at a trans-
verse dc electric field E30= 1.752 V/nm. The wave functions
of the HOMO and the LUMO in both spins are standing
waves localized along the edges of the ZGNR. At zero ex-
ternal field, the HOMO and LUMO have periods given by
2m/k, and 2/k,, respectively (here k, and k. are the al-
lowed wave vectors nearest the infinite-ribbon &, and k., re-
spectively). Each wave function is distributed symmetrically
on the two edges. When an electric field is present, a remark-
able feature appears in the wave functions, illustrated in Fig.
3 for an external dc field E‘3°=1.745 V/nm. The HOMO
localizes more on the “top” edge with a period that is still
21/ k, on both edges (k, changes slightly as a function of the
external field); the LUMO, on the other hand, retains the
period 27/ k. on the “bottom” edge where it is preferentially
localized but acquires a period of 27/k, on the other edge.
We will see later that these periods determine the periods of
the charge and spin waves set up by pertinent external radia-
tion.

We now turn to the response of the (8,99) ZGNR under an
external ac EM field. We first study the low-frequency (GHz)
response away from resonances and focus on the formation
of the edge standing spin waves. The resonance in the THz
range will be discussed later. In addition to the transverse dc
field E€°=1.745 V/nm, we add an ac electric field with a
frequency w=16 GHz (Aw=0.01 meV) and a small ampli-
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FIG. 3. (Color online) The wave function of HOMO/LUMO at
[(a) and (c)] the top edge and [(b) and (d)] the bottom edge of the
(8,99) ZGNR. The curves added in (a)—(d) are guides for the eye.

tude of E5°=0.01 V/nm, which is within the linear-response
regime. One can envision either a purely electric ac field or a
photon field at the same frequency; the dipole approximation
applies and the magnetic field is negligible.

The dynamic charge response function (6Q,) to the EM
field is computed using the linear-response theory developed
previously.'"* The results are plotted in Fig. 4. In order to
show the charge response more vividly, we smooth the dis-
crete site charges 86Q,(i) using a Gaussian function to obtain
a spatial charge density,

4r-r;

4
Op,(r) = JE eXP(— 7) 80,(i), (3)

where a is the lattice constant of graphene. We first examine
the effect of substrate screening.!” In Fig. 4 we compare the
dynamic charge response of the (8,99) ZGNR with and with-
out the substrate screening. In panels of Figs. 4(a) and 4(b),
we assume a very strong screening from a substrate whose
dielectric constant is essentially infinity. The strong screen-
ing induces the electrons in the ZGNR to behave as if they
are essentially noninteracting, whereby the charge response
is given directly by the linear-response susceptibility.'* Com-
pare this result with panel of Fig. 4(c), where no substrate
screening is included and the dynamic charge response is one
order-of-magnitude smaller. Note that the substrate screening
does not affect the exchange interaction between electrons
inside the GNR; thus it has no effect on the exchange cou-
pling parameter J;;. From this point on, we will focus only in
the case with a strong substrate screening.

Comparing panels of Figs. 4(a) and 4(b), we see that the
spin waves for the « spin are much weaker than for the 3
spin. The reason is that both the HOMO and the LUMO are
B-spin states while all the a-spin states are farther away from
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FIG. 4. (Color online) The dynamic charge response of the
(8,99) ZGNR with strong substrate screening for (a) « and (b) B
spins. The same response without any substrate screening for the 8
spin is shown in (c) and is an order-of-magnitude smaller. (d) shows
the dynamic charge responses of B spin in (b) at the top and bottom
edges of the (8,99) ZGNR. The dc electric field is E(ylc
=1.745 V/nm, and the electric component of the EM wave is E}°
=0.01 V/nm at w=16 GHz frequency.

the Fermi energy, whereby their response to the EM field is
weaker. Because of this asymmetry in the response between
the two spins, the net charge response is spin polarized
whereby the standing waves are standing spin waves. Shown
in Fig. 4(b) the standing spin waves are localized at the two
zigzag edges.

The charge and the spin waves are from the cross terms
between the HOMO and the LUMO wave functions which
are mixed by the EM field. The wave vectors of the spin
waves are simply the sum of the wave vectors of the HOMO
and LUMO wave functions. Thus for the top edge we should
expect 2k,. Because k, is very close to the Brillouin-zone
boundary, we should see 27/a—2k,, or a wavelength of 5a,
in the actual spin wave. Similarly, for the bottom edge, we
should see a wave vector 27/a—k,—k,., or a wavelength of
10a. Thus, the unusual LUMO wave function that exhibits
two different periods is predicted to give spin waves with
different periods along each edge. Figure 4(d) shows the
variation in the charge response Qg along the two edges,
confirming the prediction of the two periods. The very long
periods (5a and 10a) of these waves in graphene, compared
to the Friedel oscillations which usually have periods com-
parable to lattice constants, makes graphene an excellent
candidate for detecting and exploiting this effect.

Finally, we show in Fig. 5 that the resonance frequency of
the standing spin waves can be tuned with the transverse dc
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FIG. 5. (Color online) (a) The g=27/a—2k, (top edge) and ¢
=2m/a—k,—k, (bottom edge) components of the Fourier transform
of the standing spin waves as a function of the driving frequency
with the transverse dc electric field Egcz 1.745 V/nm; (b) The reso-
nance frequency as a function of the transverse dc electric field.

electric field. When the frequency of the EM wave is varied,
the amplitudes of the standing spin waves exhibit resonances
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as a function of the frequency. In order to show the reso-
nances, we calculate the g=2m/a-2k, (top edge) and ¢
=2m/a—k,—k. (bottom edge) components of the Fourier
transform 8Q4(q) of the standing spin waves. Figure 5(a)
shows the resonances of the standing spin waves at both
edges under a transverse dc electric field ESC= 1.745 V/nm.
By varying the transverse dc electric field, one can tune the
resonance frequency (wg). Figure 5(b) shows the resonance
frequency as a function of the transverse dc electric field.
This resonance frequency corresponds to the energy differ-
ence between the HOMO and the LUMO. The fact that this
resonance can be tuned by an external dc voltage provides an
additional controlling lever for potential applications.

In summary, the unique electronic structure of ZGNRs
enables the excitation of resonant edge standing spin waves
by electromagnetic radiation in the THz regime. The THz
regime lies between traditional radio and light waves and has
presented unique challenges. In recent years it has been pos-
sible to produce devices that emit and detect THz waves.
Manipulation of THz radiation and the design of THz de-
vices is a current frontier with promise for cutting-edge ap-
plications in communications, security, imaging, and medical
applications.!® Graphene nanoribbons provide a test bed for
THz “optospintronics.”
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